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Abstract—This paper proposes the novel concept of reasoning-
based Bluetooth Low-Energy (BLE) neighbor discovery, an indi-
rect paradigm of device-to-device sensing to address challenges
(e.g., interference and power limitations) where direct sensing
falls short. Inspired by the classical Rule of Syllogism, reasoning-
based BLE neighbor discovery abstracts the device-to-device
sensing as the presence detection of a BLE signal in a certain
space. It deduces the presence of the BLE signal according to the
presence of the Wi-Fi signal through the historical correlation
between BLE and Wi-Fi. To demonstrate the feasibility of
this new neighbor discovery paradigm, we report the design
and evaluation of a prototype called ReND. By leveraging the
complementary strengths of Wi-Fi and BLE, ReND reduces up to
91.3% and 65.9% of the 50th and 95th percentile BLE neighbor
discovery latency, respectively. We further discuss the feasibility
and incentive of ReND in the Polygon’s Mumbai Testnet public
blockchain.

Index Terms—neighbor discovery, syllogism, fingerprint,
blockchain

I. INTRODUCTION

Device-to-device Bluetooth Low-Energy (BLE) neighbor
discovery, serves as a fundamental stage for enabling diverse
Internet of Everything (IoE) scenarios, including marketing
activities such as advertising, promotions, and scheduling, as
well as interactive applications like seamless access systems
and robot navigation [1]. It mainly employs a neighbor dis-
covery protocol [2], including the roles of a scanner and
a broadcaster, where one device tries to establish contact
with another device in the Bluetooth signal range. The user
experience of applications is usually significantly affected by
the neighbor discovery latency [3], which is measured from
the point when both devices enter the range of reception, to
the point when the scanner captures the complete packet in
a broadcast event. This paradigm of neighbor discovery falls
into the category of “direct sensing”.

BLE neighbor discovery in the paradigm of “direct sens-
ing” faces two foundational challenges. First, minimizing
the neighbor discovery latency may require increased power
consumption as a trade-off. In 2019, Kindt et al. [2] introduced
tight latency bounds that surpassed previous approaches for
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BLE neighbor discovery parameter settings. They concluded
that there were no further possibilities for improving the
relationship between latency and duty cycle [4]. Second,
Bluetooth signal interference may still significantly impact the
neighbor discovery latency even when the scanner runs in a
high-power mode (see §II-A).

However, in this paper, we argue that there is still ample
potential for improvement, especially in practical scenarios.
When abstracting the neighbor discovery problem as the
presence detection of the BLE Beacon in a certain space,
considering the ubiquity of Wi-Fi APs, we have seen the
possibilities of reasoning about the presence of BLE Beacon
from the presence of Wi-Fi fingerprints, which is denoted by
a list of Wi-Fi APs nearby the BLE Beacon. Thus we design
ReND, a Reasoning-based Neighbor Discovery paradigm that
makes full use of the complementarity between Wi-Fi and
BLE. In the case of a long BLE neighbor discovery latency,
ReND accelerates the discovery by deducing the presence
of the BLE Beacons according to the presence of Wi-Fi
fingerprints through the historical correlation between them.

Essentially, ReND is a kind of “indirect sensing” that
leverages the Rule of Syllogism [5] to address wireless sensing
challenges where direct sensing falls short (see §II-B). The
logical foundation of syllogisms includes a major premise, a
minor premise, and a conclusion. For example, given the major
premise: “Device B is near Device A”, and the minor premise:
“Device A is found”, then we can deduce the conclusion:
“Device B is found”. From the perspective of syllogistic
reasoning, the major premise of ReND highlights the mapping
relationship between BLE signals and Wi-Fi signals. The
minor premise of ReND involves the matching of Wi-Fi
fingerprint information. The conclusion of ReND is therefore
the discovery of BLE signals.

By introducing logical inference processes into BLE neigh-
bor discovery, the discovery latency can be reduced in many
cases. First, it is essential to maintain a delicate tradeoff
between latency and power consumption. Typically, to con-
serve power, longer broadcast intervals and lower duty cycles
are used, but this may result in unexpected long discovery
latency [3]. In this case, ReND can be applied to accelerate
BLE neighbor discovery with a lower power budget (see
§IV). This benefit can be attributed to the complementarity
between Wi-Fi and BLE in discovery patterns (see §II-B).
Second, wireless interference leads to packet loss, especially



in environments with a high density of Bluetooth signals,
such as crowded malls [3]. In this case, ReND can be also
applied to accelerate BLE neighbor discovery regardless of
Bluetooth signal interference. This benefit can be attributed
to the complementarity between Wi-Fi and BLE in wireless
interference (see §II-B).

The ReND system comprises two subsystems: FiND and
FingerprintHub. FiND, the core of ReND, provides the
fingerprint-based neighbor discovery protocol that accelerates
BLE neighbor discovery via Wi-Fi fingerprints. It relies on
massive location data (e.g., Wi-Fi fingerprints and Beacon IDs)
for inference according to the Rule of Syllogism (see §III-A).
FingerprintHub, a blockchain-based platform that overcomes
both the trust issues and incentive issues by embedding in-
centive mechanisms through smart contracts, enables the value
transfer and circulation of location data, facilitating secure and
transparent data sharing and publishing (see §III-B).

With the aid of a cloud server and a blockchain system,
we successfully integrated a prototype of the ReND system
into the Android platform. Through performance evaluation,
ReND has demonstrated remarkable reductions in neighbor
discovery latency. Specifically, ReND reduces 73.9%-91.3%
and 46.3%-65.9% of the 50th and 95th percentile latency,
respectively. ReND can also evolve healthily with more data
providers contributing high-quality data (see §IV).

II. BACKGROUND AND MOTIVATION

A. Background

Rule of Syllogism. In the field of natural sciences, reasoning
is widely recognized as the process of concluding from given
premises, and it is also considered an act, method, or skill of
deducing new information or conclusions through logical and
inferential rules. In reasoning, a classic form is a syllogism,
often called Rule of Syllogism [5]. The Rule of Syllogism
consists of three parts: major premise (first premise), minor
premise (second premise), and a conclusion. As shown in
Fig. 1, two premises are composed of three parts, namely
major term (P), middle term (M), and minor term (S). The
major premise is composed of major term and middle term
while minor premise is composed of middle term and minor
term, where each term can serve as a subject and predicate
in the premise. Due to different positions of major term,
middle term, and minor term in premise, different syllogistic
reasoning cases are formed [5]. As shown in Fig. 1, “Metal is
conductive” is the major premise, and “Iron is a type of metal”
is minor premise. In the major premise, M (Metal) serves as
the subject, and P (conductive) serves as the predicate, i.e.,
M–P. In the minor premise, S (Iron) serves as the subject and
M (Metal) serves as the predicate, i.e., S–M. According to the
Rule of Syllogism, we conclude: S–P (“Iron is conductive”).

Challenges of BLE Neighbor Discovery. The current neigh-
bor discovery technologies mainly employ a direct sensing
paradigm. In the case when device A (acts as the scanner)
tries to discover device B (acts as the broadcaster), direct
neighbor discovery means device B is discovered by device A,

Fig. 1: Reasoning-based neighbor discovery under the Rule
of Syllogism.

only if device A has received the advertised wireless packets
from device B. However, direct sensing may fall short in the
following cases.

Case 1: There exists a trade-off between latency and power
consumption. BLE neighbor discovery faces a trade-off be-
tween latency and power consumption. Neighbor discovery
latency depends on the broadcaster’s broadcast interval (A),
the scanner’s scan window (W ), and the scanner’s scan interval
(T ). Power consumption is directly proportional to the scan
duty cycle (D = W

T ) and inversely proportional to A. To
conserve power, modern applications often use a large A (e.g.,
> 1000 ms) and a low D (e.g.,< 10%), but this can lead
to unacceptable discovery latency (e.g., > 5 seconds) due to
interleaved activity [2]. Applying a smaller A (e.g., 20 ms is
the smallest value in the Android system) or a higher D (e.g.,
at most 100%) significantly reduces the neighbor discovery
latency. However, the latency is still unacceptable in the case
of wireless interference [6], as we will discuss next.

Case 2: There exists wireless interference. Currently, BLE
Beacons (iBeacon, Eddystone, AltBeacon, aBeacon, HiBea-
con, etc.) operating in the 2.4 GHz ISM frequency band are
extensively used in public spaces. The increasing number of
Bluetooth-equipped devices, particularly wearables, due to the
Internet of Things has led to a rise in wireless interference.
This interference adversely affects the performance of BLE
neighbor discovery. For instance, in a medium-sized shopping
mall, the simultaneous existence of over 20 BLE signals can
significantly impact the neighbor discovery latency even with
a small A and a large D (see §IV).

B. Motivation

Complementarity Between Wi-Fi and BLE. The two modes
of Wi-Fi and BLE show complementarity in both wireless
interference and discovery patterns. First, Wi-Fi and BLE
show complementarity in wireless interference. Although both
BLE and Wi-Fi operate in the 2.4GHz ISM band, the 3
channels (i.e., channels 37 (2402MHz), 38 (2426MHz), and
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39 (2480MHz)) used by BLE neighbor discovery are almost
unaffected by Wi-Fi interference (e.g., channels 1-11 (2412-
2472MHz)). Second, Wi-Fi and BLE show complementarity
in discovery patterns in two aspects: (a) Wi-Fi not only
supports BLE-like passive scanning but also supports active
scanning during which the client radio transmits a probe
request and listens for a probe response from an AP. Generally,
a passive scan takes more time in neighbor discovery, since
the client must listen and wait for a beacon versus actively
probing to find an AP. (b) Wi-Fi always returns discovery
results (although might be from a previous scan if the current
scan has not been completed or succeeded) [7], while BLE
may return nothing.

Reasoning-based Sensing Under the Rule of Syllogism.
The challenges of BLE neighbor discovery ultimately stem
from the limitations of the direct sensing approach. There-
fore, it becomes crucial to explore alternative methods of
indirect sensing to facilitate connectivity and overcome these
challenges. Inspired by the Rule of Syllogism, we propose a
novel concept of reasoning-based sensing to enable an indirect
paradigm of device-to-device neighbor discovery. Reasoning-
based sensing also consists of a major premise, a minor
premise, and a conclusion. For example, when integrating Wi-
Fi fingerprints into BLE neighbor discovery (see Fig. 1), the
reasoning-based sensing paradigm works as follows. Given the
major premise: “A list of Wi-Fi APs (i.e., Wi-Fi fingerprints) is
near to a BLE Beacon”, and the minor premise: “Phone is near
to the Wi-Fi APs”. When the Wi-Fi APs are matched, we can
deduce the conclusion: “Phone is near to the BLE Beacon”.
In this case, the scanner (i.e., Phone) doesn’t need to receive
the advertised wireless packets from the BLE Beacon, which
is even not required to support the Bluetooth communication
mode. Fig. 1 also shows that applying reasoning-based sensing
moves the operating point forward, potentially accelerating the
wireless sensing progress.

III. REND OVERVIEW

Founded on the concept of reasoning-based neighbor dis-
covery, we introduce the ReND system. Essentially, ReND
falls into the category of multimodal sensing that incorporates
Wi-Fi-based sensing with BLE-based sensing. Its goal is to
reduce BLE neighbor discovery latency with a low power
budget even under fierce Bluetooth signal interference. Fig. 2
shows the framework of the ReND system. ReND comprises
two subsystems, namely FiND and FingerprintHub. The col-
laboration between FiND and FingerprintHub within ReND
creates a comprehensive demonstration of the application of
the reasoning-based sensing concept in the real world.

FiND. Serving as the core component of ReND, FiND pro-
vides a fingerprint-based neighbor discovery protocol that
accelerates BLE neighbor discovery using Wi-Fi fingerprints.
As shown in Fig. 2, FiND employs the rules of syllogism
for reasoning, taking “A BLE Beacon is near to a Wi-Fi
fingerprint” as the major premise, and “The Wi-Fi fingerprint
is found” as the minor premise. If the fingerprint is matched
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Cloud Server
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A BLE Beacon is near 

to a Wi-Fi fingerprint.

Minor premise: Wi-Fi fingerprint is found.

Conclusion: Beacon is found.
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Fig. 2: The framework of ReND.

at the Cloud Server, then we derive the conclusion “The BLE
Beacon is found”.

FingerprintHub. The FiND subsystem heavily relies on the
Major-Premise Repository which contains a substantial vol-
ume of Wi-Fi fingerprints and Beacon IDs for reasoning-based
sensing. Due to the propagation characteristics of wireless sig-
nals, these datasets typically require periodic updates to main-
tain their relevance and accuracy. To build the Major-Premise
Repository, we introduce FingerprintHub, a blockchain-based,
large-scale intelligent platform designed for collecting Wi-Fi
fingerprint data. As shown in Fig. 2, FingerprintHub leverages
crowdsourced users to collect location data (e.g., the mapping
between Wi-Fi fingerprints and Beacon IDs). It adopts a smart
contract to address the urgent concerns of trust in the data
collection process. Additionally, it acquires a deposit to reward
crowdsourced users based on a carefully designed Automated
Incentive Allocation Mechanism, facilitating the transfer of the
value of location data.

A. Design of FiND

The Workflow of FiND. FiND employs a phone to deduce
Beacon ID by leveraging Wi-Fi fingerprints and a remote cloud
server. Here’s the basic workflow involved.

Step 1: The phone initiates BLE scanning for a specific
duration, whose failing to locate Beacon will proceed to Step
2. Step 2: The phone acquires the Wi-Fi fingerprint by either
performing Wi-Fi scanning or retrieving historical records
from the cache. Step 3: The Phone sends a request containing
the Wi-Fi fingerprint to the Cloud Server. This fingerprint
infers that “The Phone is near a list of Wi-Fi APs”. Step
4: The Cloud Server, utilizing the Wi-Fi fingerprint from
the Major-Premise Repository, queries the Beacon ID and
employs Syllogistic Reasoning to obtain a result. This result
is then sent as a response to the Phone. Consequently, the
Phone discovers the BLE Beacon “indirectly” through the
FiND system.

Major-Premise Repository. The Major-Premise Repository
is implemented by a mapping table on the cloud server to
store the mapping information between Wi-Fi fingerprints
and Beacon IDs. Each record represents a major premise
that “A BLE Beacon is near a Wi-Fi fingerprint”. Note that
the mapping table is initially empty in the FiND system,
thus it does not accelerate BLE neighbor discovery. When a
user successfully discovers a Beacon device in the first step
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Fig. 3: The basic workflow of Smart Contract Mechanism.
mentioned above, the user is allowed to collect the Wi-Fi
fingerprint and Beacon ID and upload the mapping of them
to the Cloud Server. In this case, the user becomes a Data
Contributor as specified in the FingerprintHub subsystem.

Syllogistic Reasoning. In the Cloud Server, the output of
Syllogistic Reasoning is the result inferred based on the major
premise and minor premise. Specifically, the major premise
claims “A BLE Beacon is near a Wi-Fi fingerprint”, and the
minor premise: “The Wi-Fi fingerprint is found”. When the
fingerprint in the minor premise is matched to the fingerprint
in the major premise, we can deduce the conclusion: “The
BLE Beacon is found”. Nevertheless, the fluctuating nature of
wireless signals introduces instability in Wi-Fi fingerprints. To
address this concern, we utilize fuzzy matching techniques to
enhancing the robustness of FiND. One such technique is the
utilization of the Jaccard index [8] to calculate the similarity
coefficient between fingerprints: J(A,B) = |A∩B|

|A∪B| , where A
and B represent the sets of current and historical fingerprints,
respectively. The symbol | · | denotes the size of a set. In this
paper, the fuzzy matching returns ∅ if all the records meet
J(A,B) < 0.5. Otherwise, the fuzzy matching returns the
record with the highest J(A,B).

B. Design of FingerprintHub

The data-sharing market that is powered by Fingerprint-
Hub consists of two key participants: data contributors and
consumers. Data contributors can provide Wi-Fi fingerprints
and Beacon IDs for pursuing rewards. Data consumers can
query data and apply for access to data by paying a designated
deposit. To build a high-quality Major-Premise Repository for
the FiND subsystem, two fundamental issues and challenges
should be considered when designing FingerprintHub, namely
the trust issue and the incentive issue.

Smart Contract Mechanism. FingerprintHub adopts the
smart contract to solve the trust issues. Fig. 3 illustrates the
basic workflow of FingerprintHub. Step 1: Data contributors
encrypt the Wi-Fi fingerprint data. Then data contributors call
the smart contract to upload the Wi-Fi fingerprint data to
the blockchain system. Step 2: Data consumers search for
data of interest (Wi-Fi data packets) in an indexed manner
using smart contracts. Data consumers may deposit funds as
collateral for data value payment and reward distribution in
the smart contract to initiate a data-sharing request. Step 3: A

Data Consumer selects the most suitable data contributor and
calls the smart contract to send a data-sharing request to the
data contributor. Step 4: Upon receiving the request from the
data consumer, the data contributor verifies the identity of the
data consumer. Then the data contributor sends the encrypted
authorization data back to the data consumer. Step 5: Once
the data consumer receives the authorized encrypted data, the
smart contract triggers the issuance of the corresponding Wi-
Fi data packet from the blockchain to the data consumer. The
data consumer then decrypts the Wi-Fi data packet, obtaining
the data used for building the Major-Premise Repository. Step
6: After successful data acquisition, FingerprintHub triggers
the smart contract, calling the reward distribution function
to allocate rewards to the data contributor based on data
quality and reward principles. Step 7: After obtaining the
final data, data consumers can evaluate the data. Step 8: Data
contributors can also score data consumers based on their
relevant reputation to mitigate the risk of malicious behavior.

Automated Incentive Allocation Mechanism. Fingerprint-
Hub adopts the automated incentive allocation mechanism to
solve the incentive issues. The effectiveness of the same set
of data may vary significantly among different users due to
factors such as user requirements for data accuracy, timing of
data collection, and frequency of data acquisition. Therefore,
traditional fixed pricing models are no longer sufficient to
meet current demands. To achieve fairer and more efficient
resource allocation, we have established a dynamic pricing
mechanism based on data value. The data pricing model
in FingerprintHub is as follows: we assume that each data
provided by platform data providers consumes a certain token
as the cost of publishing shared data (gas), denoted as c. In
the FingerprintHub platform, we have established a unified
billing standard, with the price of each data purchased by data
consumers being r. Therefore, when data is purchased, the
basic income for data providers is e = (r− c) ∗ n, where n is
the number of data purchased. After purchasing data and using
it, data users rate each data packet based on its effectiveness.
Here, we agree that the rating for each data packet in the
same bundle is the same. The feedback rating from data users
are divided into five levels, including extremely dissatisfied,
dissatisfied, useless, satisfied and extremely satisfied. The
corresponding values are -1, -0.5, 0, 0.5 and 1 respectively. We
calculate the average of all ratings received by data providers
as the utility increment of the pricing model, denoted as δu,
where −1 ≤ δu ≤ 1. The reward income based on feedback
ratings from data users is denoted as e′, where e′ = δu · r · n.
Therefore, for data providers, the comprehensive income E is
given by E = e+ e′ = (r − c) · n+ δu · r · n.

IV. EVALUATION

A. Experiment Setup

To verify the effectiveness of the ReND system in ac-
celerating BLE neighbor discovery, we established a test
environment utilizing an Android smartphone. The smartphone
was connected to a remote server (e.g., Alibaba Cloud ECS2),
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Fig. 4: The evaluation of ReND with wireless interference.

with an average round-trip time (RTT) of 100 ms. At the same
time, we developed a decentralized application to materialize
FingerprintHub. This involves creating a front-end interface
(running on the Android smartphone) for users to interact with
smart contracts deployed on a blockchain network (e.g., Poly-
gon [9]), thereby obtaining substantial location data through
crowdsourcing. The Major-Premise Repository on the server
obtains high-quality data, including a substantial volume of
Wi-Fi fingerprints and Beacon IDs, from the blockchain net-
work. We configured the Beacon advertising interval to 1000
ms. The distance between the broadcaster and the scanner
is 5 meters. Additionally, we defined three BLE scan modes
on the Android smartphone: LOW POWER (WT =10%), BAL-
ANCED (WT =25%), and LOW LATENCY (WT =100%) [10].
When running ReND, the Android smartphone utilized the
LOW POWER mode.

B. Performance Improvement

Scenario 1: Little Interference. In a location free from
Bluetooth interference, we strategically placed BLE Beacons
and a phone in an open area where more than 10 Wi-Fi
APs could be detected. The results depicted in Fig. 4(a)
clearly illustrate the significant acceleration achieved in BLE
neighbor discovery by implementing ReND with a low-duty
cycle. Notably, when the phone operates in LOW POWER
mode, ReND effectively reduces the 50th percentile latency
by 91.3% and the 95th percentile latency by 65.9%. This is
because ReND makes the tradeoff between latency and power
consumption less critical to BLE neighbor discovery.

Scenario 2: Fierce Interference. In an office environment
with fierce interference caused by the presence of more than
20 nearby randomly distributed BLE signals, we deployed both
the BLE Beacons and the phone. Despite this challenging
scenario, where over 10 Wi-Fi APs could still be detected,
our findings presented in Fig. 4(a) and Fig. 4(b) showcase the
stable and low-latency neighbor discovery achieved by ReND.
In comparison, the traditional methods experience a decline
in performance when faced with such fierce interference. Re-
markably, even when compared to using the LOW LATENCY
mode, ReND excels by reducing the 50th percentile latency
by 73.9% and the 95th percentile latency by 46.3%. This
remarkable improvement can be attributed to ReND’s ability
to effectively leverage the complementary nature of Wi-Fi and
BLE. By doing so, ReND can mitigate the negative impact
of intense Bluetooth interference on BLE discovery latency,
allowing for more reliable and efficient neighbor discovery.
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Fig. 5: Latency analysis in FiND.

C. Feasibility Analysis

Latency Breakdown in FingerprintHub. Before diving into
the data-sharing process in FingerprintHub, we first inves-
tigated the overall performance of the FingerprintHub pro-
totype on Polygon’s Mumbai Testnet public blockchain. In
FingerprintHub, the MATIC token is employed to assess
incentives and balance between location data contributors and
consumers [11]. Data contributors receive MATIC tokens post
their initial data sharing. The system underwent a performance
evaluation and after measuring 20,000 blocks, the average
single block creation time was determined to be 2.48 seconds.
We believe the response at the second level can satisfy the
storage and sharing of Wi-Fi fingerprint data considering
the low update frequency of the Major-Premise Repository.
The data-sharing process in FingerprintHub encompasses three
main phases: upload phase, request for data usage phase and
the authorization and key exchange phase. The time expenses
of these three stages were measured, revealing average du-
rations of 10.28 seconds, 12.18 seconds, and 10.42 seconds,
respectively. Notably, 80% of the total duration across these
phases falls within the 37.5 seconds threshold.

Latency Breakdown in FiND. In this experiment, tests are
conducted in an office environment with fierce interference
caused by the presence of more than 20 nearby randomly
distributed BLE signals. The scanning mode was consistently
maintained in LOW POWER mode. The overall latency of
FiND includes Wi-Fi scan latency, fuzzy matching latency, and
Internet latency, as presented in Fig. 5. “BLE” in the X-axis
denotes the scenario when only using BLE scanning on the
phone, and “FiND” in the X-axis denotes the scenario when
applying FiND with only Wi-Fi scanning on the phone. It
indicates that the Internet latency dominates the 50th percentile
latency of FiND. This is because the Wi-Fi fingerprints can
be directly read from the system cache in most cases [7],
resulting in a low Wi-Fi scan latency. However, the Wi-Fi scan
latency dominates the 95th percentile latency of FiND. This
is because the phone has to redo an all-channel Wi-Fi scan
when it fails to read a valid result in the cache. In both cases,
it is demonstrated that the overall latency of FiND is much
less than that of “BLE”. This further validates the feasibility
of applying FiND to accelerate BLE neighbor discovery.

Power Consumption. In this experiment, we investigate the
power consumption of ReND. We compare three cases: low
latency mode power consumption is 1.18mAh/30min, balanced
mode power consumption is 0.448mAh/30min, and ReND
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(a) Incentives under varying δu (b) Incentives under varying time

Fig. 6: Incentives with varying δu and participation time.

mode power consumption is 0.179mAh/30min. The results
show that ReND achieves the lowest power consumption. In
particular, ReND reduces power consumption by 84.8% and
60.0% compared to low latency and balanced, respectively.
This reveals that ReND can accelerate BLE neighbor discovery
with a low-duty cycle, making it suitable for applications with
stringent power requirements.

D. Incentive Analysis

In FingerprintHub, we assess the equilibrium of data con-
tributors by measuring their earnings and costs. Each data
contributor incurs ∼0.063 MATIC as the cost of publishing a
single data entry. To attract more participation in data sharing,
we configure an earning base (i.e., 0.63 MATIC) for each data
consumption. As described in §III-B, a data contributor’s final
balance comprises both base earnings and bonus earnings. As
shown in Fig. 6(a) and 6(b), We evaluate the incentives for
data contributors under varying δu and duration, in which
the larger δu and more participation enable data contributors
obtain more incentives. Conversely, when δu is negative, data
contributors incur losses. Moreover, as the duration of data
provision extends, earnings increase due to the possibility of
the same data being purchased by multiple data consumers.
Therefore, the experimental evaluation demonstrates that the
FingerprintHub platform can evolve healthily in promoting
data sharing, which can incentivize more data contributors to
join this platform and contribute high-quality data.

V. RELATED WORK

Neighbor Discovery Acceleration. Efficient neighbor discov-
ery aims to achieve the shortest possible discovery latency for
a given power budget. To this end, a large number of broadcast
and scan setting approaches have been proposed for general
wireless neighbor discovery, see [12], [13]. Different from
these works that seek to find the optimized parameter settings
of the BLE broadcasters and scanners, ReND further enlarges
the solution space of BLE neighbor discovery optimization by
integrating with Wi-Fi fingerprints.

Fusion Between Wi-Fi and BLE. A significant body of
academic research has been devoted to the integration of Wi-
Fi and BLE signals for various applications [14], [15]. Liu
et al. [16] propose WiBeacon, a system that transforms com-
monly deployed WiFi access points into virtual BLE beacons
with minimal software upgrades. To the best of our knowledge,
no prior work has accelerated BLE neighbor discovery via Wi-
Fi fingerprints.

Crowdsourced Data-Sharing Frameworks. The concept of
crowdsourcing has been widely applied across numerous
fields, resulting in a plethora of application cases [17], [18].
Utilizing blockchain technology enables the provision of a
trust mechanism within data crowdsourcing platforms [19],
[20]. Consequently, this paper implements FingerprintHub, a
privacy-friendly and fully trusted location data crowdsourcing
platform based on blockchain.

VI. CONCLUSION

In this paper, we for the first time discuss the possibility
of one kind of “indirect sensing”, called “reasoning-based
sensing”, and report its demonstration system called ReND.
The evaluation of ReND not only confirms the performance
improvement of integrating Wi-Fi fingerprints into BLE, but
also establishes an architectural paradigm for reasoning-based
sensing. We believe the proposition of the reasoning-based
sensing concept holds significant importance in both academic
and industrial realms.
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